Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A redetermination at low temperature of the structure of triethylammonium bromide

Natasha H. Munro and Lyall R. Hanton*
Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: Ihanton@chemistry.otago.ac.nz

Received 9 October 2008; accepted 25 October 2008
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA ; R$ factor $=$ $0.020 ; w R$ factor $=0.058$; data-to-parameter ratio $=24.1$.

The structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$, was determined at low temperature and the cell dimensions were comparable to those reported for room-temperature studies [James, Cameron, Knop, Newman \& Falp, (1985). Can. J. Chem. 63, 1750-1758]. Initial analysis of the data led to the assignment of $P 3_{1} c$ as the space group rather than $P 6_{3} m c$ as reported for the room-temperature structure. Careful examination of the appropriate $\left|F_{\mathrm{o}}\right|$ values in the low-temperature data showed that the equalities $|F(\bar{h} k l)|=|F(h \bar{k} l)|$ and $|\mathrm{F}(h k l)|$ $=|F(h k \bar{l})|$ did not hold at low temperature, confirming $P 3_{1} \mathrm{c}$ as the appropriate choice of space group. As a consequence of this choice, the N atom sat on a threefold axis and the ethyl arms were not disordered as observed at room temperature. The crystal studied was an inversion twin with a 0.68 (3):0.32 (3) domain ratio.

Related literature

For related structures, see: James et al. (1985). For the preparation, see: Lecolley et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=182.10$
Trigonal, P31c
$a=8.3589$ (2) \AA
$c=7.3125$ (2) A
$V=442.48(1) \AA^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.450, T_{\text {max }}=0.632$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.058$
$S=1.24$
555 reflections
23 parameters
1 restraint
$Z=2$
Mo $K \alpha$ radiation
$\mu=4.56 \mathrm{~mm}^{-1}$
$T=90(2) \mathrm{K}$
$0.27 \times 0.11 \times 0.10 \mathrm{~mm}$

8583 measured reflections 555 independent reflections 550 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the award of a John Edmond Postgraduate Scholarship in Chemistry (NHM) and thank the University of Otago Research Committee and the New Economic Research Fund (grant No UOO-X0404 from the New Zealand Foundation of Research Science and Technology) for financial support.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
James, M. A., Cameron, S. T., Knop, O., Neuman, M. \& Falk, M. (1985). Can. J. Chem. 63, 1750-1758.
Lecolley, F., Tao, L., Mantovani, G., Durkin, I., Lautru, S. \& Haddleton, D. M. (2004). Chem. Commun. pp. 2026-2027.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

A redetermination at low temperature of the structure of triethylammonium bromide

N. H. Munro and L. R. Hanton

Comment

The title compound, (I), was isolated as a by-product in a reaction to form (2,5-oxo-1-pyrrolidyl)oxy-2-bromo-2-methylpropionate (Lecolley et al., 2004). A view of the structure of (I) is presented in Fig. 1. The crystal structures of (I) and the other halide analogues at ambient temperature have previously been described by James et al. (1985). Unlike previous work, analysis of our low-temperature data showed that (I) crystallized in the space group P3 ${ }_{1} \mathrm{c}$ with the ethyl chains in fixed locations. The e.s.d.'s of the positional parameters and the R factors were significantly lower than those reported for the room temperature structure. The packing of (I) (Fig. 2) at low temperature is very similar to that of the room temperature disordered structure. James et al. (1985) also analysed the IR spectra of these compounds in some detail.

Experimental

The title compound, (I), was prepared as a by-product in a reaction to form (2,5-oxo-1-pyrrolidyl)oxy-2-bromo-2-methylpropionate by the method of Lecolley et al. (2004). X-Ray quality crystals were grown by the slow evaporation of an acetonitrile solution.

Refinement

All H -atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA, U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl CH H atoms and $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.97 \AA, U_{\mathrm{iso}}=1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene CH H atoms. The H -atom bound to nitrogen was refined using a riding model with $\mathrm{d}(\mathrm{N}-\mathrm{H})=0.87 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{N})$.

Figures

supplementary materials

Fig. 2. Packing diagram of (I) in the $a b$ plane.

Triethylammonium bromide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=182.10$
Trigonal, P31c
Hall symbol: P 3-2c
$a=8.3589$ (2) \AA
$b=8.3589 \AA$
$c=7.3125(2) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=442.48(1) \AA^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=90$ (2) K
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.450, T_{\text {max }}=0.633$
8583 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.058$
$Z=2$
$F_{000}=188$
$D_{\mathrm{x}}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 7729 reflections
$\theta=2.8-27.5^{\circ}$
$\mu=4.56 \mathrm{~mm}^{-1}$
$T=90$ (2) K
Rod, colourless
$0.27 \times 0.11 \times 0.10 \mathrm{~mm}$

555 independent reflections
550 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\min }=4.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-8 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0371 P)^{2}+0.4873 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.24$
555 reflections
23 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.39$ e \AA^{-3}
Extinction correction: none
Absolute structure: Flack (1983), 273 Friedel pairs
Flack parameter: 0.32 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The crystal studied was an inversion twin with a 0.68 (3);0.32 (3) domain ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.1624(6)$	$0.8395(6)$	$0.4111(5)$	$0.0323(9)$
H1A	0.1536	0.8181	0.2815	0.048^{*}
H1B	0.2690	0.9571	0.4373	0.048^{*}
H1C	0.0533	0.8389	0.4534	0.048^{*}
N1	0.3333	0.6667	$0.4505(6)$	$0.0168(12)$
H1	0.3333	0.6667	0.3260	0.020^{*}
C2	$0.1789(5)$	$0.6982(5)$	$0.5011(5)$	$0.0232(7)$
H2A	0.0644	0.5830	0.4820	0.028^{*}
H2B	0.1884	0.7240	0.6312	0.028^{*}
Br1	0.6667	0.3333	0.5017	$0.01786(16)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.034(2)$	$0.038(2)$	$0.035(2)$	$0.026(2)$	$-0.0004(16)$	$-0.0026(17)$
N1	$0.0162(14)$	$0.0162(14)$	$0.018(3)$	$0.0081(7)$	0.000	0.000
C2	$0.0168(15)$	$0.0228(14)$	$0.0293(17)$	$0.0095(12)$	$0.0004(14)$	$0.0001(16)$
Br1	$0.01867(19)$	$0.01867(19)$	$0.0162(2)$	$0.00933(9)$	0.000	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

C1—C2	$1.418(5)$	$\mathrm{N} 1-\mathrm{C}^{\mathrm{i}}$	$1.488(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	$\mathrm{~N} 1-\mathrm{C}^{\mathrm{ii}}$	$1.488(4)$
C1—H1B	0.9600	$\mathrm{~N} 1-\mathrm{H} 1$	0.9100

supplementary materials

$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 2$	$1.488(4)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	104.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 22^{\mathrm{i}}-\mathrm{N} 1-\mathrm{H} 1$	104.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 22^{\mathrm{ii}}-\mathrm{N} 1-\mathrm{H} 1$	104.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$119.1(3)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2^{\mathrm{i}}$	$114.03(18)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C}^{\mathrm{ii}}$	$114.03(18)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5
$\mathrm{C}^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C}^{\mathrm{ii}}$	$114.03(18)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.0

Symmetry codes: (i) $-x+y,-x+1, z$; (ii) $-y+1, x-y+1, z$.

Fig. 1

(4) ${ }^{81}$

supplementary materials

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2113).

